Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
3.
J Cardiovasc Magn Reson ; 26(1): 100005, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38211656

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) imaging is an important tool for evaluating the severity of aortic stenosis (AS), co-existing aortic disease, and concurrent myocardial abnormalities. Acquiring this additional information requires protocol adaptations and additional scanner time, but is not necessary for the majority of patients who do not have AS. We observed that the relative signal intensity of blood in the ascending aorta on a balanced steady state free precession (bSSFP) 3-chamber cine was often reduced in those with significant aortic stenosis. We investigated whether this effect could be quantified and used to predict AS severity in comparison to existing gold-standard measurements. METHODS: Multi-centre, multi-vendor retrospective analysis of patients with AS undergoing CMR and transthoracic echocardiography (TTE). Blood signal intensity was measured in a ∼1 cm2 region of interest (ROI) in the aorta and left ventricle (LV) in the 3-chamber bSSFP cine. Because signal intensity varied across patients and scanner vendors, a ratio of the mean signal intensity in the aorta ROI to the LV ROI (Ao:LV) was used. This ratio was compared using Pearson correlations against TTE parameters of AS severity: aortic valve peak velocity, mean pressure gradient and the dimensionless index. The study also assessed whether field strength (1.5 T vs. 3 T) and patient characteristics (presence of bicuspid aortic valves (BAV), dilated aortic root and low flow states) altered this signal relationship. RESULTS: 314 patients (median age 69 [IQR 57-77], 64% male) who had undergone both CMR and TTE were studied; 84 had severe AS, 78 had moderate AS, 66 had mild AS and 86 without AS were studied as a comparator group. The median time between CMR and TTE was 12 weeks (IQR 4-26). The Ao:LV ratio at 1.5 T strongly correlated with peak velocity (r = -0.796, p = 0.001), peak gradient (r = -0.772, p = 0.001) and dimensionless index (r = 0.743, p = 0.001). An Ao:LV ratio of < 0.86 was 84% sensitive and 82% specific for detecting AS of any severity and a ratio of 0.58 was 83% sensitive and 92% specific for severe AS. The ability of Ao:LV ratio to predict AS severity remained for patients with bicuspid aortic valves, dilated aortic root or low indexed stroke volume. The relationship between Ao:LV ratio and AS severity was weaker at 3 T. CONCLUSIONS: The Ao:LV ratio, derived from bSSFP 3-chamber cine images, shows a good correlation with existing measures of AS severity. It demonstrates utility at 1.5 T and offers an easily calculable metric that can be used at the time of scanning or automated to identify on an adaptive basis which patients benefit from dedicated imaging to assess which patients should have additional sequences to assess AS.

4.
Expert Rev Cardiovasc Ther ; 21(3): 193-210, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36877090

ABSTRACT

INTRODUCTION: In aortic stenosis (AS), the heart transitions from adaptive compensation to an AS cardiomyopathy and eventually leads to decompensation with heart failure. Better understanding of the underpinning pathophysiological mechanisms is required in order to inform strategies to prevent decompensation. AREAS COVERED: In this review, we therefore aim to appraise the current pathophysiological understanding of adaptive and maladaptive processes in AS, appraise potential avenues of adjunctive therapy before or after AVR and highlight areas of further research in the management of heart failure post AVR. EXPERT OPINION: Tailored strategies for the timing of intervention accounting for individual patient's response to the afterload insult are underway, and promise to guide better management in the future. Further clinical trials of adjunctive pharmacological and device therapy to either cardioprotect prior to intervention or promote reverse remodeling and recovery after intervention are needed to mitigate the risk of heart failure and excess mortality.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Heart Valve Prosthesis Implantation , Humans , Aortic Valve/surgery , Hypertrophy, Left Ventricular/surgery , Heart Valve Prosthesis Implantation/adverse effects , Ventricular Function, Left , Aortic Valve Stenosis/surgery , Ventricular Remodeling/physiology
6.
Rofo ; 195(6): 506-513, 2023 06.
Article in English | MEDLINE | ID: mdl-36854383

ABSTRACT

BACKGROUND: Aortic valve stenosis (AVS) is one of the most prevalent pathologies affecting the heart that can curtail expected survival and quality of life if not managed appropriately. CURRENT STATUS: Cardiac computed tomography (CT) has long played a central role in this subset, mostly for severity assessment and for procedural planning. Although not as widely accepted as other imaging modalities for functional myocardial assessment [i. e., transthoracic echocardiogram (TTE), cardiac magnetic resonance (CMR)], this technique has recently increased its clinical application in this regard. FUTURE OUTLOOK: The ability to provide morphological, functional, tissue, and preprocedural information highlights the potential of the "all-in-one" concept of cardiac CT as a potential reality for the near future for AVS assessment. In this review article, we sought to analyze the current applications of cardiac CT that allow a full comprehensive evaluation of aortic valve disease. KEY POINTS: · Noninvasive myocardial tissue characterization stopped being an exclusive feature of cardiac magnetic resonance.. · Emerging acquisition methods make cardiac CT an accurate and widely accessible imaging modality.. · Cardiac CT has the potential to become a "one-stop" exam for comprehensive aortic stenosis assessment.. CITATION FORMAT: · Gama FF, Patel K, Bennett J et al. Myocardial Evaluation in Patients with Aortic Stenosis by Cardiac Computed Tomography. Fortschr Röntgenstr 2023; 195: 506 - 513.


Subject(s)
Aortic Valve Stenosis , Quality of Life , Humans , Aortic Valve Stenosis/diagnostic imaging , Magnetic Resonance Imaging , Echocardiography , Tomography, X-Ray Computed/methods , Aortic Valve/diagnostic imaging
7.
Interv Cardiol ; 16: e09, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34188693

ABSTRACT

Current guidelines recommend aortic valve replacement in patients with severe aortic stenosis in the presence of symptoms or a left ventricular ejection fraction <50%. However, patients with less than severe aortic stenosis may also experience symptoms and recent literature suggests that the prognosis is not as benign as previously reported. There are no recommendations for patients with moderate aortic stenosis and left ventricular dysfunction, despite the high associated morbidity and mortality. There is also some evidence that these patients may benefit from early aortic valve intervention. It is recognised that aortic stenosis not only affects the valve but also has a complex myocardial response. This review discusses the natural history of moderate aortic stenosis along with the role of multimodality imaging in risk stratification in these patients.

8.
JACC Cardiovasc Imaging ; 14(11): 2155-2166, 2021 11.
Article in English | MEDLINE | ID: mdl-33975819

ABSTRACT

OBJECTIVES: The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome-coronavirus-2 infection. BACKGROUND: Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS: Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS: A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction <54%, septal T1 >1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS: Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.


Subject(s)
COVID-19 , Cardiovascular Abnormalities , Adolescent , Adult , Artificial Intelligence , Case-Control Studies , Contrast Media , Female , Gadolinium , Health Personnel , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Myocardium , Predictive Value of Tests , Prospective Studies , SARS-CoV-2 , Ventricular Function, Left , Young Adult
9.
BJU Int ; 123(5): 753-768, 2019 05.
Article in English | MEDLINE | ID: mdl-30378242

ABSTRACT

OBJECTIVES: To systematically review the evidence regarding the efficacy of vaccines or immunostimulants in reducing the recurrence rate of urinary tract infections (UTIs). MATERIALS AND METHODS: The Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica dataBASE (EMBASE), PubMed, Cochrane Library, World Health Organization (WHO) International Clinical Trials Registry Platform Search Portal, and conference abstracts were searched up to January 2018 for English-titled citations. Randomised placebo-controlled trials evaluating UTI recurrence rates in adult patients with recurrent UTIs treated with a vaccine were selected by two independent reviewers according to the Population, Interventions, Comparators, and Outcomes (PICO) criteria. Differences in recurrence rates in study populations for individual trials were calculated and pooled, and risk ratios (RRs) using random effects models were calculated. Risk of bias was assessed using the Cochrane Collaboration's tool and heterogeneity was assessed using chi-squared and I2 testing. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to evaluate the quality of evidence (QOE) and summarise findings. RESULTS: In all, 599 records were identified, of which 10 studies were included. A total of 1537 patients were recruited and analysed, on whom data were presented. Three candidate vaccines were studied: Uro-Vaxom® (OM Pharma, Myerlin, Switzerland), Urovac® (Solco Basel Ltd, Basel, Switzerland), and ExPEC4V (GlycoVaxyn AG, Schlieren, Switzerland). At trial endpoint, the use of vaccines appeared to reduce UTI recurrence compared to placebo (RR 0.74, 95% confidence interval [CI] 0.67-0.81; low QOE). Uro-Vaxom showed the greatest reduction in UTI recurrence rate; the maximal effect was seen at 3 months compared with 6 months after initial treatment (RR 0.67, 95% CI 0.57-0.78; and RR 0.78, 95% CI 0.69-0.88, respectively; low QOE). Urovac may also reduce risk of UTI recurrence (RR 0.75, 95% CI 0.63-0.89; low QOE). ExPEC4V does not appear to reduce UTI recurrence compared to placebo at study endpoint (RR 0.82, 95% CI 0.62-1.10; low QOE). Substantial heterogeneity was observed across the included studies (chi-squared = 54.58; P < 0.001, I2  = 84%). CONCLUSIONS: While there is evidence for the efficacy of vaccines in patients with recurrent UTIs, significant heterogeneity amongst these studies renders interpretation and recommendation for routine clinical use difficult at present. Further randomised trials using consistent definitions and endpoints are needed to study the long-term efficacy and safety of vaccines for infection prevention in patients with recurrent UTIs.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Secondary Prevention , Urinary Tract Infections/prevention & control , Vaccines , Humans , Randomized Controlled Trials as Topic , Recurrence , Treatment Outcome , Urinary Tract Infections/immunology , Urinary Tract Infections/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...